Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Lab Med ; 8(1): 53-66, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610415

RESUMO

BACKGROUND: Ultra-performance liquid chromatography (UPLC)-MSE/quadrupole time-of-flight (QTOF) high-resolution mass spectrometry employs untargeted, data-independent acquisition in a dual mode that simultaneously collects precursor ions and product ions at low and ramped collision energies, respectively. However, algorithmic analysis of large-scale multivariate data of comprehensive drug screening as well as the positivity criteria of drug identification have not been systematically investigated. It is also unclear whether ion ratio (IR), the intensity ratio of a defined product ion divided by the precursor ion, is a stable parameter that can be incorporated into the MSE/QTOF data analysis algorithm. METHODS: IR of 91 drugs were experimentally determined and variation of IR was investigated across 5 concentrations measured on 3 different days. A data-driven machine learning approach was employed to develop multivariate linear regression (MLR) models incorporating mass error, retention time, number of detected fragment ions and IR, accuracy of isotope abundance, and peak response using drug-supplemented urine samples. Performance of the models was evaluated in an independent data set of unknown clinical urine samples in comparison with the results of manual analysis. RESULTS: IR of most compounds acquired by MSE/QTOF were low and concentration-dependent (i.e., IR increased at higher concentrations). We developed an MLR model with composite score outputs incorporating 7 parameters to predict positive drug identification. The model achieved a mean accuracy of 89.38% in the validation set and 87.92% agreement in the test set. CONCLUSIONS: The MLR model incorporating all contributing parameters can serve as a decision-support tool to facilitate objective drug identification using UPLC-MSE/QTOF.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Íons
2.
Nat Commun ; 13(1): 1891, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393402

RESUMO

The SARS-CoV-2 3CL protease is a critical drug target for small molecule COVID-19 therapy, given its likely druggability and essentiality in the viral maturation and replication cycle. Based on the conservation of 3CL protease substrate binding pockets across coronaviruses and using screening, we identified four structurally distinct lead compounds that inhibit SARS-CoV-2 3CL protease. After evaluation of their binding specificity, cellular antiviral potency, metabolic stability, and water solubility, we prioritized the GC376 scaffold as being optimal for optimization. We identified multiple drug-like compounds with <10 nM potency for inhibiting SARS-CoV-2 3CL and the ability to block SARS-CoV-2 replication in human cells, obtained co-crystal structures of the 3CL protease in complex with these compounds, and determined that they have pan-coronavirus activity. We selected one compound, termed coronastat, as an optimized lead and characterized it in pharmacokinetic and safety studies in vivo. Coronastat represents a new candidate for a small molecule protease inhibitor for the treatment of SARS-CoV-2 infection for eliminating pandemics involving coronaviruses.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Inibidores de Proteases , Antivirais/química , Antivirais/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...